
    1 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

 

 

Solving stochastic dynamic programming models 

without transition matrices 

Paul L. Fackler 

Department of Agricultural & Applied Economics and  

Department of Applied Ecology 

North Carolina State University 

 

Computational Sustainability Seminar 

Nov. 3, 2017 

  



    2 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Outline 
Brief review of dynamic programming 

curses of dimensionality 

index vectors 

DP algorithms 

Expected Value (EV) functions 

Staged models 

Models with deterministic post-action states 

Factored Models 

Factored models & conditional independence 

Evaluation of EV functions 

Results for two spatial models: 

 dynamic reserve site selection 

 control of an invasive species on a spatial network  

Models with transition functions and random noise 

Wrap-up 

 

  



    3 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Dynamic Programming Problems 

Given state values 𝑆, action values 𝐴, reward function 𝑅(𝑆, 𝐴),  state transition probability matrix 
𝑃(𝑆+|𝑆, 𝐴) and discount factor 𝛿, solve 

𝑉(𝑆) = max 
𝐴(𝑆)

∑ 𝛿𝑡𝐸𝑡[𝑅(𝑆𝑡 , 𝐴(𝑆𝑡))]
∞

𝑡=0
 

Equivalently solve Bellman’s equation: 

𝑉(𝑆) = max 
𝐴(𝑆)

𝑅(𝑆, 𝐴(𝑆)) + 𝛿 ∑ 𝑃(𝑆+|𝑆, 𝐴(𝑆))𝑉(𝑆+)
𝑆+

 

Find the strategy 𝐴(𝑆) that maximizes: 

  the current reward R plus  

 the discount factor 𝛿 times 

the expected future value ∑ 𝑃(𝑆+|𝑆, 𝐴)𝑉(𝑆+)𝑆+  

  



    4 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Curses of dimensionality 

Problem size grows exponentially with increases in the number of variables 

 

Powell discusses 3 curses: 

 growth in the state space 

 growth in the action space 

 growth in the outcome space 

 

In discrete models we represent  

the size of the state space as 𝑛𝑠 

 the size of the state/action space as 𝑛𝑥   

The state transition probability matrix is 𝑛𝑠 × 𝑛𝑥 

 

Focus here on problems for which 
vectors of size 𝑛𝑥 can be stored and manipulated 
but matrices of size 𝑛𝑠 × 𝑛𝑥 are problematic 

Thus the focus in on moderately sized problems 

By having techniques to solve moderately sized problems we can gain insight into the quality of 
heuristic or approximate methods that must be used for large problems  



    5 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Index Vectors 

Vectors composed of positive integers 

Used for: 

 extraction 

 expansion  

 shuffling 

Let: 

             𝐴 =

[
 
 
 
 
 
1 0
1 1
2 0
2 1
3 0
3 1]

 
 
 
 
 

                              𝐵 =

[
 
 
 
 
 
 
 
 
 
 
 
1 0 0
1 0 1
1 1 0
1 1 1
2 0 0
2 0 1
2 1 0
2 1 1
3 0 0
3 0 1
3 1 0
3 1 1]

 
 
 
 
 
 
 
 
 
 
 

  

 

𝐼 = [5 6 7 8] extracts the rows of 𝐵 with the first column equal to 2: 𝐵(𝐼, 1) = 2 

𝐼 = [1 1 2 2 3 3 4 4 5 5 6 6] expands 𝐴 so 𝐴(𝐼, : ) = 𝐵(: , [1 2])  

𝐼 = [1 2 1 2 3 4 3 4 5 6 5 6] expands 𝐴 so 𝐴(𝐼, : ) = 𝐵(: , [1 3]) 
 



    6 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Dynamic Programming with Index Vectors 
Consider a DP model with 2 state variables each binary and 3 possible actions 

 

𝑆 lists all possible states and matrix 𝑋 lists all possible state/action combinations: 

  

𝑆 = [

0 0
0 1
1 0
1 1

]               𝑋 =

[
 
 
 
 
 
 
 
 
 
 
 
1 0 0
1 0 1
1 1 0
1 1 1
2 0 0
2 0 1
2 1 0
2 1 1
3 0 0
3 0 1
3 1 0
3 1 1]

 
 
 
 
 
 
 
 
 
 
 

  

 

Column 1 of 𝑋 is the action and columns 2 and 3 are the 2 states 

 

The expansion index vector that gives the states in each row of 𝑋 is 

 𝐼𝑥 = [1 2 3 4 1 2 3 4 1 2 3 4]  
 

This expands 𝑆 so 𝑆(𝐼𝑥, : ) = 𝑋(: , [2  3]) 

 

  



    7 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Strategies as Index Vectors 

A strategy can be specified as an extraction index vector with the 𝑖th element associated with 

state 𝑖: 
 

𝐼𝑎 = [1  6  7  12 ] yields: 

   𝑋(𝐼𝑎, : ) = [

1 0 0
2 0 1
2 1 0
3 1 1

] 

 

i.e., a strategy that associates action 1 with state 1, action 2 with states 2 and 3 and action 3 with 

state 4 

 

Strategy vectors select a single row of 𝑋 for each state so 𝑋(𝐼𝑎, 𝐽𝑠) = 𝑆 where 𝐽𝑠 is an index of the 

columns of 𝑋 associated with the state variables  

  



    8 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Dynamic Programming Algorithms 
 

Typically solved with function iteration or policy iteration 

Both use a maximization step that, for a given value function vector 𝑉, solves: 

𝑉̃𝑖 = max
𝑗: 𝐼𝑥(𝑗)=𝑖

[𝑅 + 𝛿𝑃⊤𝑉]𝑗     

with the associated strategy vector 𝐼𝑎: 

𝐼𝑖
𝑎 = argmax

𝑗: 𝐼𝑥(𝑗)=𝑖
[𝑅 + 𝛿𝑃⊤𝑉]𝑗  

 

This is followed by a value function update step 

Function iteration updates 𝑉 using: 

𝑉 ← 𝑉̃ 

Policy iteration updates 𝑉 by solving:  

𝑊𝑉 = (𝐼 − 𝛿𝑃[: , 𝐼𝑎]⊤)𝑉 =𝑅[: , 𝐼𝑎] 

 

When the discount factor 𝛿 < 1  the matrix 𝑊 = 𝐼 − 𝛿𝑃[: , 𝐼𝑎]⊤ is row-wise diagonally dominant   



    9 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Dynamic Programming with Expected Value (EV) functions 
 

An EV function 𝑣 transforms the future state vector into its expectation conditional on current 

states and actions (𝑋): 

𝑣(𝑉+) = 𝐸[𝑉+|𝑋] 
 

An indexed evaluation transforms the future state vector into its expectation condition on the 

states and actions indexed by 𝐼𝑎 

𝑣(𝑉+, 𝐼𝑎) = 𝐸[𝑉+|𝑋[𝐼𝑎, : ]] 

The maximization step uses a full EV evaluation: 

max
𝑗: 𝐼𝑥(𝑗)=𝑖

𝑅𝑗 + 𝛿[𝑣(𝑉)]𝑗 

 

Value function updates use an indexed evaluation 

Function iteration: 

𝑉 ← 𝑅[𝐼𝑎] + 𝛿𝑣(𝑉, 𝐼𝑎) 

Policy iteration (solve for 𝑉):  

ℎ(𝑉) = 𝑉 − 𝛿𝑣(𝑉, 𝐼𝑎) =𝑅[𝐼𝑎] 
 

Note that policy iteration with EV functions 

cannot be solved using direct methods (e.g., LU decomposition)  

but can be solved efficiently using iterative Krylov methods 

 

 

 



    10 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

 

Advantages to using EV functions 
 

The EV function 𝑣 can often be evaluated far faster and use far less memory than using the 

transition matrix 𝑃 

 

There are at least 3 situations in which EV functions are advantageous: 

 Sparse staged transition matrices 

 Deterministic actions 

 Factored models with conditional independence 

 

When the state transition occurs in 2 stages the transition matrix can be written as 

            𝑃 = 𝑃2𝑃1  
where 𝑃1 and 𝑃2 are both sparse but their product is not 

 

A deterministic action transforms the current state into a post-decision state 

The transition matrix can be written as 𝑃 = 𝑃̃𝐴 where 𝐴 has a single 1 in each column 

 

In factored models individual state variables have their own transition matrices that are 

conditioned on a subset of the current states and actions 
  



    11 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

SPOMs with staged transitions 
Stochastic Patch Occupancy Models (SPOMs): 

𝑁 sites w/ each site either empty or occupied (0/1) 

Individual site transition matrices for each stage are triangular: 

 

                         𝐸𝑖 = [
1 𝑒𝑖

0 1 − 𝑒𝑖
]                           𝐶𝑖 = [

1 − 𝑐𝑖 0
𝑐𝑖 1

]  

2𝑁 possible state values 

𝑃 has 4𝑁 elements and is dense  

If the transition is decomposed into extinction and colonization phases: 

𝑃 = 𝐸𝐶 or 𝑃 = 𝐶𝐸  

𝐸 and 𝐶 are sparse with each have 3𝑁 non-zero elements in these matrices 

  



    12 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Sparsity patterns for extinction and colonization transition matrices 

 

For 𝑁 = 10 

                                    𝐸                                                     𝐶 

 

  



    13 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Typical computational times for SPOM model 

Time required to do a basic matrix-vector and matrix-matrix multiply 
 𝑁 

 8 9 10 11 12 13 14 

𝐸⊤(𝐶⊤𝑣)  0.026  0.065  0.086  0.136  0.292  1.672  4.870 

𝑃𝑣  0.014  0.036  0.084  0.801  4.011 15.298 64.277 

𝑃 = 𝐶𝐸  0.008  0.008  0.046  0.154  0.724  3.499 19.332 

density 0.100 0.075 0.056 0.042 0.032 0.024 0.018 

 

Rows 1 & 2 display the time required for 1000 evaluations using 

                factored form 𝐸⊤(𝐶⊤𝑣) and  

                full form 𝑃⊤𝑣 

Row 3 shows the setup time required to a form 𝑃  

Row 4 shows the fraction of non-zero elements in 𝐸 and 𝐶 

These results are even more dramatic if each site can be classified into more than 2 categories. 

  



    14 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

 

Deterministic effect of actions and post-decision states 

Post-decision state 𝑆̃ is a deterministic function of the state and action: 𝑆̃ = 𝑔1(𝑆, 𝐴)   

The future state depends stochastically on the post decision state: 𝑃2 = 𝑃(𝑆+|𝑆̃) 

Example: fisheries models  

    state                             current stock  

    action                          harvest  

    post-harvest state     escapement  

Future stock depends on escapement =  current stock - harvest 

 

In this case we require 

𝑛𝑠 × 𝑛𝑠 transition matrix 𝑃2 

𝑛𝑥 index vector ℐ1 that defines the 𝑔 mapping.  

The expected value function can then be written as 𝐸𝑉(𝑉) = [𝑃2
⊤𝑉](ℐ1) 

 

This helps address curse of dimensionality in the action space 

  



    15 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Factored models and conditional independence 

Factored models can be expressed in terms of a set of variables, each with a transition matrix 

When enough conditional independence exists use of the factored form leads to substantial 

computational efficiencies 

 

Levels of conditional independence: 

1) each future state has unique set of conditioning variables 

2) conditioning variables involve overlapping sets of current states & actions 

3) conditioning variables include overlapping sets of random variables  

4) some future states are causally dependent on other future states 

 

Examples 

Level 1: dynamic reserve site selection 

Level 2: network spatial model of invasive species control 

Level 3: population dynamics with multiple age/stage classes 

 

  



    16 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Level 1 Conditional  Independence 

 
If the conditioning sets for all the state variables are disjoint the transition matrix can be written 

as 

𝑃 = 𝑃1 ⊗ 𝑃2 ⊗ …⊗ 𝑃𝑑 

The EV function is therefore 

𝑣(𝑉) = (𝑃1
⊤ ⊗ 𝑃2

⊤ ⊗ …⊗ 𝑃𝑑
⊤)𝑉 

This chained Kronecker product can be efficiently computed without forming 𝑃 using a series of 

𝑑 matrix-matrix multiplies 

 A MATLAB implementation:      

 
  

function y=chainkron(P,V); 

    d = length(P); 

    y = V; 

    for i=1:d 

        ni = size(P{i},1); 

        y = reshape(y,numel(y)/ni,ni); 

        y = P{i}’*y’; 

    end 

    y = y(:); 

 



    17 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Dynamic Reserve Site Selection Problem 

Costello & Polasky (2004) “Dynamic Reserve Site Selection.”  

 

𝑁 sites  

Each site in one of 3 categories: available, in the reserve or developed 

If not acquired site 𝑖 will move from available to developed with probability 𝑝𝑖.   

One site can be acquired each period 

 

State space represented by 3𝑁 × 𝑁 matrix 𝑆 

 

The action (acquisition) changes the state in a deterministic way so the model can be specified in 

terms of a post-acquisition transition matrix 

 

𝑃 is a 3𝑁 × 3𝑁 post-acquisition transition matrix which contains 4𝑁 non-zero elements:   

𝑃 = 𝑃1 ⊗ 𝑃2 ⊗ …⊗ 𝑃𝑁 

where the 𝑃𝑗 are 3 × 3 individual site transition matrices 

𝑃𝑗 = [

1 − 𝑝𝑗 0 0

0 1 0
𝑝𝑗 0 1

]. 

The chained Kronecker product – vector multiplication can be implemented sequentially using 

𝑁3𝑁−1 operations involving only the 𝑃𝑗  



    18 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

But it’s complicated 

The individual 𝑃𝑖 are 3 × 3 and sparse with exactly 4 non-zeros 

𝑃 is sparse with exactly 4𝑁 non zero elements 

The multiplication counts using  

sparse 𝑃 matrix:         4𝑁 = (
4

3
)
𝑁

3N 

𝑁 individual 𝑃𝑖:      𝑁3𝑁−1 = 𝑁 (
4

3
)3𝑁 

(
4

3
)
𝑁

< 𝑁 (
4

3
) when 𝑁 ≤ 8  so using the full matrix has fewer operations for small 𝑁 

It is possible that using more than 1 but less than 𝑁 submatrices may be better yet 

If we use a continuous approximation the multiplication count, using 𝑠 submatrices, is 

𝑠 (
4

3
)
𝑁/𝑠

 

(this is exact when 𝑁/𝑠 is integer) 

This expression is minimized when 𝑠 = ln (
4

3
)𝑁 = 0.2877 𝑁 

In practice there seems to be a penalty for using more submatrices  



    19 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

But it’s complicated (cont.) 

Relative operation counts are shown below (log scale) 

 

Use of a relatively small # of submatrices is indicated 

In practice using 2 submatrices for 8 < 𝑁 < 16 and gradually increasing as 𝑁 increases appears 

to be optimal  



    20 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Level 2 Conditional  Independence 

 
Consider a model defined by a set of 𝑑 state variables 

The conditioning variables are organized into an 𝑛𝑥 × 𝑑𝑥 matrix 𝑋 

each row represents a unique combination of states and actions 

Each state has: 

a CPT 𝑃𝑖 representing the transition probability conditioned on a subset of 𝑋 

an index vector 𝑞𝑖 defining a set of conditioning (parent) variables, i.e., columns of 𝑋 

Each CPT is processed sequentially using index vectors to match according to the conditioning 

variables 

The basic approach requires an indexed multiplication of a 3-D array by a 2-D array: 

𝑦(ℎ, 𝑘) ←  𝑦(ℎ, : , 𝐼𝑖
𝑦
(𝑘)) ∗ 𝑃𝑖(: , 𝐼𝑖

𝑝(𝑘) ) 

where 𝐼𝑖
𝑦

 and 𝐼𝑖
𝑝

 are index vectors that match the 3rd dimension of 𝑦 with the columns of 𝑃𝑖 

No memory copying and shuffling of memory required 

For each 𝑘 there is a matrix vector multiply that is implemented with a call to dgemm 

A function is produced that is called using  

𝑣(𝑉) for a full evaluation or 

𝑣(𝑉, 𝐼𝑎) for an indexed evaluation  



    21 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Evaluating EV functions with index vectors 
  

Set 𝑦0 = 𝑉 and let 𝑦𝑖 be the intermediate product after incorporating the first 𝑖 CPTs 

 

The 𝐼𝑖
𝑝

 and 𝐼𝑖
𝑦

 vectors have length 𝑚𝑖 with 𝑚𝑖−1 ≤ 𝑚𝑖 ≤ 𝑛𝑥:  𝑚𝑖 = ∏ 𝑛𝑗𝑗∈𝑄𝑖
   where 𝑄𝑖 = ⋃ 𝑞𝑘

𝑖
𝑘=1  

In words, 𝑚𝑖 is the size of the space of conditioning variables for the first 𝑖 state variables 

The total operation count is ∑ 𝑝𝑖𝑚𝑖 where 𝑝𝑖 = ∏ 𝑛𝑗
𝑑
𝑗=𝑖

𝑑
𝑖=1  

(𝑝𝑖 is the size of the space of the remaining unprocessed state variables) 

This can be contrasted to the use of the full transition matrix, which uses 𝑛𝑠𝑛𝑥 operations 

Note that variable order matters and ideally we want the 𝑚𝑖 to grow slowly 

Using the 𝐼 index vectors a full EV function evaluation is computed using the following algorithm: 

  

set 𝑦 = 𝑣 

reshape 𝑦 to be ∏ 𝑛𝑗
𝑑
𝑗=2 × 𝑛1 

set 𝑦 ← 𝑦 ∗ 𝑝1 

loop from 𝑖 = 2 to 𝑖 = 𝑑 

  reshape 𝑦 to be (∏ 𝑛𝑗
𝑑
𝑗=𝑖+1 ) × 𝑛𝑖 × 𝑚𝑖−1 

  perform an indexed multiplication where 𝑦(ℎ, 𝑘) ←  𝑦(ℎ, : , 𝐼𝑖
𝑦
(𝑘)) ∗ 𝑃𝑖(: , 𝐼𝑖

𝑝(𝑘) )  

 return 𝑦 



    22 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Indexed EV evaluations 
The previous algorithm does a full EV evaluation 

         returns 𝐸[𝑉(𝑆+)|𝑋]  for all state/action combinations  

We also require an efficient way to compute 𝐸[𝑉(𝑆+)|𝑋] for a specific strategy 

Let the strategy be defined by the index vector 𝐼𝑎 (with length 𝑛𝑠) 

If the space of conditioning variables for states 1-𝑖 is smaller than space of state variables 

expand to match the common conditioning variables 

otherwise expand to match the strategy 

Define 𝐽𝑖
𝑝
 to be an index that expands the columns of 𝑃𝑖 to match those of the full 𝑋 matrix 

Each 𝐽𝑖
𝑝
 is a vector of length 𝑛𝑥 (equals the # of rows of 𝑋) 

 

Thus use 𝐼𝑖
𝑦

 and 𝐼𝑖
𝑝

 indices while they are smaller than the 𝐼𝑎 vector (𝑚𝑖 < 𝑛𝑠) 

Then expand the intermediate factor 𝑦𝑖 and switch to indexing with 𝐽𝑖
𝑝
(𝐼𝑎) 

An additional index vector 𝐽𝑖−1
𝑦

 must be defined where 𝑖 is the loop index when the change from 𝐼 

to 𝐽 indexing occurs to expand 𝑦𝑖 

The number of arithmetic operations is ∑ ∏ 𝑛𝑗 min(𝑚𝑖 , 𝑛𝑠)
𝑑
𝑗=𝑖

𝑑
𝑖=1  (recall that 𝑛𝑠 = ∏ 𝑛𝑖

𝑑
𝑗=1 ) 

Contrast this with an indexed operation using 𝑃[: , 𝐼𝑎] which uses 𝑛𝑠
2 arithmetic operations 

  



    23 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Indexed EV evaluations (cont.) 
 

A full EV function evaluation could be computed using the following algorithm:  

 

  

set 𝑦 = 𝑣 

reshape 𝑦 to be ∏ 𝑛𝑗
𝑑
𝑗=2 × 𝑛1 

set 𝑦 ← 𝑦 ∗ 𝑝1 

set useI = true 

loop from 𝑖 = 2 to 𝑖 = 𝑑 

 if  𝑚𝑖 < 𝑛𝑠 

   reshape 𝑦 to be (∏ 𝑛𝑗
𝑑
𝑗=𝑖+1 ) × 𝑛𝑖 × 𝑚𝑖−1 and expand 𝑦(: , : , 𝑘) ←  𝑦(ℎ, : , 𝐽𝑖−1

𝑦
(𝐼𝑎(𝑘))) 

  set useI = false 

if useI=true 

  reshape 𝑦 to be (∏ 𝑛𝑗
𝑑
𝑗=𝑖+1 ) × 𝑛𝑖 × 𝑚𝑖−1 

   perform an indexed multiplication where 𝑦(ℎ, 𝑘) ←  𝑦(ℎ, : , 𝐼𝑖
𝑦
(𝑘)) ∗ 𝑃𝑖 (: , 𝐼𝑖

𝑝(𝑘))   

  otherwise 

   perform an indexed multiplication where 𝑦(ℎ, 𝑘) ←  𝑦(ℎ, : , 𝑘) ∗ 𝑃𝑖 (: , 𝐽𝑖
𝑝
(𝐼𝑎(𝑘))) 

 return 𝑦 

 



    24 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

An example 

Suppose there are 3 state variables and 1 action variables 

 

The state variable sizes are all n and the action is 𝑛𝑎 

 

With the action in the last column of 𝑋 the parents vectors are given by 

 𝑞1 = [1  4]      𝑞2 = [1  2  4]      𝑞3 = [2  3  4] 
 

The EV function is performed in 3 steps with operation counts 

 

𝑖 𝑦𝑖 𝑃𝑖 # of operations 

1 𝑛2 × 𝑛 × 1 𝑛 × 𝑛𝑛𝑎 𝑛4𝑛𝑎 

2 𝑛 × 𝑛 × 𝑛𝑛𝑎 𝑛 × 𝑛2𝑛𝑎 𝑛4𝑛𝑎 

3 1 × 𝑛 × 𝑛𝑛𝑎 𝑛 × 𝑛2𝑛𝑎 𝑛4𝑛𝑎 

 

The total operation count is 3𝑛4𝑛𝑎 

 

If the full transition matrix is used the operations count is 𝑛6𝑛𝑎 



    25 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

An indexed EV evaluation 

With function iteration most EV evaluations are indexed  

Suppose that 𝑛 < 𝑛𝑎 < 𝑛2 

A strategy index has length 𝑛𝑠 = 𝑛3  

The 𝐼𝑖  indices have sizes 𝑛𝑛𝑎, 𝑛2𝑛𝑎 and 𝑛2𝑛𝑎   

Hence the crossover from 𝐼 to 𝐽 indexing would occur in step 2 

 

𝑖 𝑦𝑖 𝑃𝑖 # of operations 

1 𝑛2 × 𝑛 × 1 𝑛 × 𝑛𝑛𝑎 𝑛4𝑛𝑎 

2 𝑛 × 𝑛 × 𝑛𝑛𝑎 𝑛 × 𝑛2𝑛𝑎 𝑛5 

3 1 × 𝑛 × 𝑛𝑛𝑎 𝑛 × 𝑛2𝑛𝑎 𝑛4 

 

The total operation count is 𝑛4(𝑛𝑎 + 𝑛 + 1) 

If the full transition matrix is used by extracting the appropriate columns of 𝑃:  𝑃[: , 𝐼𝑎] the 

operation requires 𝑛6 operations 

 
  



    26 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Combining CPTs 

Thus far we’ve considered operating on each of the 𝑃𝑖 in a sequence of 𝑑 operations 

It may be better to combine some of the CPTs in a preprocessing step 

For example suppose that 

 𝑞1 = [1  2  4]      𝑞2 = [1  2  4]  

The first two steps with 𝑃1 and 𝑃2 have operation counts 

𝑖 𝑦𝑖 𝑃𝑖 # of operations 

1 𝑛2 × 𝑛 × 1 𝑛 × 𝑛2𝑛𝑎 𝑛5𝑛𝑎 

2 𝑛 × 𝑛 × 𝑛𝑛𝑎  𝑛 × 𝑛2𝑛𝑎 𝑛4𝑛𝑎 

 

If we combine 𝑃1 and 𝑃2 in a preprocessing step to form 𝑃12 the same operation has  

𝑖 𝑦𝑖 𝑃12 # of operations 

1 𝑛 × 𝑛2 × 1 𝑛2 × 𝑛2𝑛𝑎 𝑛5𝑛𝑎 

Thus we can do both operations in a single step with the same operation count as the previous 

first step  



    27 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Optimal management of operations 

A natural approach is to minimize arithmetic operations  

but this may not be fastest or most memory efficient 

Efficiency is influenced by: 

         the sequence that the CPTs are processed 

         the preprocessing of CPTs into groups  

 the algorithms performing the arithmetic operations 

Sequencing 

Optimal sequencing is a difficult problem to solve 

         there do not appear to be any polynomial algorithms 

The sequence problem might be addressed using  

heuristics (e.g., greedy algorithm)  

global optimization methods (e.g., genetic algorithm) 

Graph theoretic and matrix reordering methods might be helpful (?) 

Grouping 

Given an ordering the minimal operations grouping can be found in polynomial time 

Arithmetic operations 

Use of high performance algorithms (e.g., dgemm) might improve performance even with 

higher arithmetic operation count 

Use of smaller factors might improve overall memory access speeds 

Memory shuffling should be avoided if possible 



    28 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Optimal grouping 

Optimal grouping of operations can be solved using an 𝑂(𝑑3) dynamic programming algorithm 

The problem is similar to the well-known matrix chain multiplication problem: 

𝐴1 ∗ 𝐴2 ∗ …∗ 𝐴𝑑  

Given a variable order the cost of incorporating a CPT that groups variables 𝑖 through 𝑗 ≥ 𝑖 is  

𝐶𝑖𝑗 = 𝑝𝑖𝑚𝑗  

where 

𝑝𝑖 = ∏ 𝑛𝑘
𝑑
𝑘=𝑖  and 

𝑚𝑗 is the number of tuples of the parents of variables 1 through 𝑗. 

For each (𝑖, 𝑗) we can evaluate whether breaking the grouped variables into two further groups 

results in a less costly set of operations: 

𝑀𝑖𝑗 = min (𝐶𝑖𝑗 , min
 𝑘∈{0,…,𝑗−𝑖+1}

𝑀𝑖,𝑖+𝑘 + 𝑀𝑖+𝑘+1,𝑗) 

 

The minimal cost grouping is given by 𝑀1𝑑. 

This is optimal for a full evaluation. 

For an indexed evaluation use 

𝐶𝑖𝑗 = 𝑝𝑖  min (𝑚𝑗 , 𝑛𝑠) 



    29 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

 
 

Optimal management of operations (cont.) 

Optimal combined sequencing of operations is related to the sum-product (tensor contraction) 

ordering problem 

 

Given 𝑛 multidimensional arrays 𝐹𝑖 indexed by a set of indices given by 𝑞𝑖 compute 

𝑮(𝒓) = ∑ ∏𝑭𝒊

𝒅

𝒊=𝟏

(𝒌 ∈ 𝒒𝒊)

𝒌∈⋃ 𝒒𝒊\𝒓𝒊  

 

 

In words, we multiple together the arrays, matching along any common dimensions, and then 

sum out the dimensions that are not desired in the output  

 

For an EV function  

factors are the CPTs for the state variables along with the 𝑉 vector,  

output indices are the current states and actions 

summed out variables are the future states and (possibly) additional noise terms 

 



    30 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Creating EV functions 

𝑃  : set of 𝑑𝑠 transition probability matrices (CPTs) 

𝑋  : 𝑑𝑥 column matrix of state/action combinations 

𝑞  :  set of 𝑑𝑠 index vectors indicating the columns of 𝑋  

associated with each state variable 

 

 

EVcreate creates an EV function  

It first performs variable reordering and optimal grouping if requested  

It then groups variables if requested 

It then sets of index vectors (𝐼 and 𝐽) used to guide operations 

Finally it creates a function that implements the sequential incorporation of each of the 𝑃𝑖  

  



    31 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Controlling invasive species on a spatial network  

Chades et al. (2011) “General rules for managing and surveying networks of pests, diseases, and 

endangered species” 

𝑁 sites with an 𝑁 × 𝑁 adjacency matrix 𝐶 

Each site is either occupied or empty and either treated or not treated:  

O/T, O/N, E/T, and E/N  

A single site can be treated each period 

Transition probability for site 𝑖 depends on whether it is  

occupied or empty (𝑆𝑖) 

treated or not treated (𝐴𝑖) 

if empty & not treated on the # of occupied/untreated neighbors: 𝑞𝑖 = ∑ 𝐶𝑖𝑗𝑆𝑗
𝑁
𝑗=1 (1 − 𝐴𝑗) 

The transition matrix for site 𝑖 can be represented by a 2 × (4 + 𝐾𝑖) matrix 

𝑃𝑖 = [
𝑝𝑜𝑡 𝑝𝑜𝑛 𝑝𝑒𝑡 𝑝𝑒𝑛

0 𝑝𝑒𝑛
1 … 𝑝𝑒𝑛

𝐾𝑖

1 − 𝑝𝑜𝑡 1 − 𝑝𝑜𝑛 1 − 𝑝𝑒𝑡 1 − 𝑝𝑒𝑛
0 1 − 𝑝𝑒𝑛

1 … 1 − 𝑝𝑒𝑛
𝐾𝑖  

] 

where 𝑝𝑒𝑛
𝑗

 is the probability of occupancy if currently empty and untreated with 𝑗 

occupied/untreated neighbors (up to 𝐾𝑖) 

State space has size 2𝑁 and there are 𝑁 + 1 possible actions (including doing nothing) 

 

There are therefore (𝑁 + 1)2𝑁 state/action combinations 



    32 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

EV versus Transition Matrix  

The operation count depends on the density of the network 

Range from all isolated to all connected 

Operation count increases as network becomes more connected 

Even a fully connected network requires significantly less operations than using 𝑃 

 
  



    33 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Network 1 

 

 

 

 

Network 2 

 
 

 

 

 

Network 3 
 
 

 

 

 

Network  4 

 

 

 

 

  



    34 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Network 5 

 

 

 

 

Network 6 

 
 

 

 

 

Network 7 
 
 

 

Network  8 

 
  



    35 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Timing Results for Invasive Species Networks 
 

Results with 𝑃, 𝑑 sequenced EV and optimally grouped EV 
  5 full evaluations 25 indexed evaluations 

network N P EV EV* P EV EV* 

1 7   0.0003   0.0092   0.0048   0.0162   0.0196   0.0084  

2 9   0.0021   0.0130   0.0122   0.0069   0.0522   0.0356  

3 10   0.0199   0.0287   0.0260   0.0666   0.1052   0.0732  

4 11   0.0826   0.0627   0.0556   0.2933   0.2244   0.1478  

5 12   0.3422   0.1406   0.1214   1.3913   0.5324   0.3304  

6 12   0.3532   0.1699   0.1399   1.3858   0.6204   0.3477  

7 13   1.8283   0.3049   0.2521   6.2127   1.1681   0.7290  

8 15 NA   2.0905   1.2996 NA   7.0212   3.8731  

 
Results with handpicked groupings with many, few and 2 factors 
  5 full evaluations 25 indexed evaluations 

network N EV* EV m 

many 

EV f EV 2 EV* EV m EV f EV 2 

1 7   0.0048   0.0028   0.0056   0.0051   0.0084    0.0100   0.0076   0.0067  

2 9   0.0122   0.0127   0.0124   0.0120   0.0356    0.0485   0.0356   0.0333  

3 10   0.0260   0.0153   0.0356   0.0250   0.0732    0.0510   0.0447   0.0684  

4 11   0.0556   0.0340   0.0390   0.0681   0.1478    0.1135   0.0946   0.1596  

5 12   0.1214   0.0688   0.0618   0.1255   0.3304    0.2435   0.1783   0.3318  

6 12   0.1399   0.1139   0.1201   0.1274   0.3477    0.3285   0.3280   0.3469  

7 13   0.2521   0.1514   0.1468   0.3312   0.7290    0.4863   0.4441   0.8862  

8 15   1.2996   1.2410   1.2149   2.0978   3.8731    3.8074   3.4394   5.4797  

  



    36 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

EV functions with transition functions  

In a dynamic system the transition law can be written as 

                       𝑆+ = 𝑔(𝑋, 𝑒)     

where:  

𝑋 represents the current state & action variables of the system  

𝑒 represents a set of random noise terms with specified distributions 

In factored form we have 𝑆𝑖
+ = 𝑔𝑖(𝑋𝑖 , 𝑒𝑖) where 𝑋𝑖 and 𝑒𝑖 are subsets of 𝑋 and 𝑒 

One approach to solving this sort of model is to discretize 𝑆, 𝑋 and 𝑒 and compute Conditional 

Probability Tables 𝑃𝑖 for each 𝑆𝑖
+ 

MDPSolve implements this approach using linear interpolation weights as probabilities 

The main issue that arises here is that when 𝑒𝑖 ∩ 𝑒𝑗 ≠ ∅ the CPTs are functions of the noise terms 

and are not conditional on 𝑋 alone 

The algorithms for merging CPTs in the EV functions would need to be modified to only sum out 

a noise variables once all future states conditional on that variables have been processed 

Alternatively one could group the variables with common noise terms and compute the single 

CPT for the group 

  



    37 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Creating EV functions from transition functions 

𝑔 : set of 𝑑𝑠 transition functions 

𝑋 : 𝑑𝑥 column matrix of state/action combinations 

𝑒  : 𝑑𝑒 element set of random variables 

𝑞  :  set of 𝑑𝑠 index vectors indicating the columns of 𝑋 and  

elements of 𝑒 associated with each state variable 

 

g2EV converts transition functions to transition matrices which are then be passed to 

EVcreate to create an EV function  

Currently g2EV requires that variables have no common random noise terms in their 

conditioning sets 

  



    38 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Mallard Duck Model 

 

Central flyway mallard duck model used to set harvest levels by USFWS 

State variables are associated with disjoint sets of noise variables  

  



    39 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Mallard Duck Model: timing results 
 

Using: 

151 values of ponds 

351 values for adult ducks 

 
  

matrix sizes 

10 full 

evaluations 

25 indexed 

evaluations 

P 53001× 212004 2.605 3.200 

EV 151×151 & 351×212004 1.130 0.864 

 

Using: 

311 values of ponds 

711 values for adult ducks 

 
  

matrix sizes 

10 full 

evaluations 

25 indexed 

evaluations 

P 221121×884484 11.602 13.959 

EV 311×311 & 711×884484  5.763  4.140 

 

Full evaluations are about 2 times and indexed evaluations about 3-4 times as fast  



    40 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Alabama Deer Model 

 
Left hand variables:    current states & actions 

Middle variables:        future states 

Right hand variables: noise variables 

 

Here the noise terms do not separate  

 

EV function may be no better than full transition matrix 



    41 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Operation count analysis 

Notice that fawn predation and the doe and mature buck noise terms affect only 1 variable and 

can be incorporated into the CPTs 

If we use the processing sequence mBuck, iBuck, Doe, Fawn and suppose that there are 𝑛𝑝 

values for each of the states, 𝑛𝑎 actions and 𝑛𝑒 values of the noise terms 

The operation count for sequential processing will be 

𝑖 variable 𝑦𝑖 𝑃𝑖 # of operations 

1 mBuck 𝑆1
+𝑆2

+𝑆3
+𝑆4

+ 𝑆1
+𝑆1𝑆2𝐴𝑒1𝑒2 𝑛𝑝

6𝑛𝑎𝑛𝑒
2 

2 iBuck 𝑆2
+𝑆3

+𝑆4
+𝑆1𝑆2𝐴𝑒1𝑒2 𝑆2

+𝑆1𝑆2𝑆4𝐴𝑒1𝑒2𝑒3𝑒4 𝑛𝑝
6𝑛𝑎𝑛𝑒

4 

3 Doe 𝑆3
+𝑆4

+𝑆1𝑆2𝑆4𝐴 𝑆3
+𝑆1𝑆2𝑆3𝑆4𝐴𝑒3𝑒4 𝑛𝑝

6𝑛𝑎𝑛𝑒
2 

4 Fawn 𝑆4
+𝑆1𝑆2𝑆3𝑆4𝐴 𝑆4

+𝑆1𝑆2𝑆3𝑆4𝐴 𝑛𝑝
5𝑛𝑎 

 

Contrast with 𝑛𝑝
8𝑛𝑎 operations with the full 𝑃 matrix 

The key operation here is number 2 with 𝑛𝑝
6𝑛𝑎𝑛𝑒

4 operations. Typically 𝑛𝑒 ≪ 𝑛𝑝 so it is possible 

that this is less than 𝑛𝑝
8𝑛𝑎 

Two changes might help: 

combine the noise terms for each category 

use a staged transition with an extra juvenile category 

      w/ stage 2 representing category change  

  



    42 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

An alternative approach 

Define post-harvest categories for each age/stage class 

Introduce new intermediate juvenile class  

Use a 2-stage approach  

  



    43 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

Wrap Up 

EV functions can replace the use of transition probability matrices 

They use less memory and can be evaluated faster (sometimes by orders of magnitude) 

Procedures to create EV functions will be incorporated into the next release of MDPSolve (or can 

be obtained from GitHub) 

EV functions are especially advantageous in exploiting conditional independence in factored 

models 

In factored models EV functions are evaluated in a sequence of indexed multiplication 

operations 

Sequence of operations and groupings of operations in a preprocessing step matter 

Optimal organization of operations is a difficult problem though some headway has been made 

 

  



    44 
 

Solving stochastic dynamic programming models without transition matrices             Paul L. Fackler, NCSU       

To Do 

Extend the indexed multiplication approach to allow noise terms to be factored out during 

evaluation 

Explore the optimal ordering (sequencing/grouping) issue more deeply 

Perhaps use penalties on number of submatrices to encourage shorter sequences 

  


