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Big goal: monitoring biodiversity, 
globally and in real time.
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How can we contribute?



Camera traps

4



Camera traps
● 1,000s of organizations
● 10,000s of projects
● 1,000,000s of camera traps
● 100,000,000s of images

5*estimates by Eric Fegraus, Conservation International
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6*estimates by Eric Fegraus, Conservation International

For example: Idaho Department of Fish and Game alone has 5 
years of unprocessed, unlabeled data, around  5 million images 



Camera trap data is challenging



All these images have an animal in them
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SOA models don’t generalize
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Recognition in Terra Incognita, Beery et al., ECCV 2018



Microsoft AI for Earth

MegaDetector

Efficient Pipeline for Automating Species ID in new Camera Trap Projects, Beery, et al., BiodiversityNext 2019
https://github.com/microsoft/CameraTraps/blob/master/megadetector.md

Class-agnostic 
detectors 
generalize best

https://github.com/microsoft/CameraTraps/blob/master/megadetector.md
https://docs.google.com/file/d/1aR_MDlGbCmAR0pO-H9jADagLuAIUSryH/preview
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Rare classes are hard 
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Camera traps are static, and objects of interest are habitual
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Synthetic data improves rare-class performance

Synthetic Examples Improve Generalization for Rare Classes, Beery et al., WACV 2020



Camera traps are static, and objects of interest are habitual
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Human labeling method
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Human labeling method
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Human labeling method
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Human labeling method
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Impala!



Human practitioners use this information, can we build a machine learning 
model that can do the same?
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Camera traps are static, and objects of interest are habitual

Context R-CNN: Long Term Context for Per-Camera Object Detection, Beery et al., CVPR 2020



1. Improve per-location object classification

These are probably the 
same species, and if 
we’re confident about 
one, that should help us 
classify the other
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Camera traps are static, and objects of interest are habitual



These rocks have not moved in a 
month, they’re probably not animals.
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Camera traps are static, and objects of interest are habitual

1. Improve per-location object classification
2. Ignore salient false positives



Contextual memory strategy

● Extract features offline
● Reduce feature size
● Curate features
● Maintain spatiotemporal information

27Context R-CNN: Long Term Context for Per-Camera Object Detection, Beery et al., CVPR 2020
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Use attention to incorporate context

Context R-CNN: Long Term Context for Per-Camera Object Detection, Beery et al., CVPR 2020
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Context is 
incorporated 
based on 
relevance

Context R-CNN: Long Term Context for Per-Camera Object Detection, Beery et al., CVPR 2020



Related Work: long-term temporal context in video

Wu et al., Long-Term Feature Banks for Detailed Video 
Understanding 

Deng et al., Object Guided External Memory Network for Video 
Object Detection

Shvets et al., Leveraging Long-Range Temporal Relationships Between 
Proposals for Video Object Detection

Wu et al., Sequence Level Semantics Aggregation for Video 
Object Detection
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Datasets

● Snapshot Serengeti (SS): 225 
cameras, 3.4M images, 48 classes, 
Eastern African game preserve

● Caltech Camera Traps (CCT): 140 
cameras, 243K images, 18 classes, 
American Southwestern urban 
wildlife

● CityCam (CC): 17 cameras, 60K 
images, 10 vehicle classes, traffic 
cameras from NYC

31Context R-CNN: Long Term Context for Per-Camera Object Detection, Beery et al., CVPR 2020



Results
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SS: Snapshot Serengeti
CCT: Caltech Camera Traps
CC: CityCam



Improves predominantly on challenging cases
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Attention is temporally adaptive to relevance



Snapshot Serengeti mAP improves for all classes
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Background classes are learned without supervision
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Static passive monitoring sensors

● Sparse, irregular frame rate
● Power, computational, and memory constraints. 
● Much of the data is “empty”
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Big goal: monitoring biodiversity, 
globally and in real time.
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How can we contribute?



Current Biodiversity AI Competitions

GeoLifeCLEF 2020

https://www.imageclef.org/GeoLifeCLEF2020https://www.kaggle.com/c/iwildcam-2020-fgvc7

Global camera traps (WCS) + RS 2M Species Observations + RS + LC + Covariates

https://www.kaggle.com/c/iwildcam-2020-fgvc7
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