Improving Computer Vision for Camera Traps

Sara Beery CompSust Open Graduate Seminar April 3rd, 2020

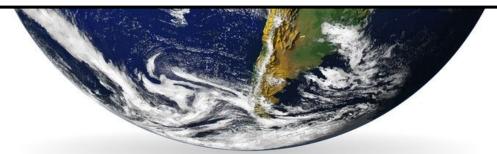
Leveraging Practitioner Insight to Build Solutions for Real-World Challenges

Big goal: monitoring biodiversity, globally and in real time.



Big goal: monitoring biodiversity, globally and in real time.

How can we contribute?



Camera traps

Camera traps

- 1,000s of organizations
- 10,000s of projects
- 1,000,000s of camera traps
- 100,000,000s of images

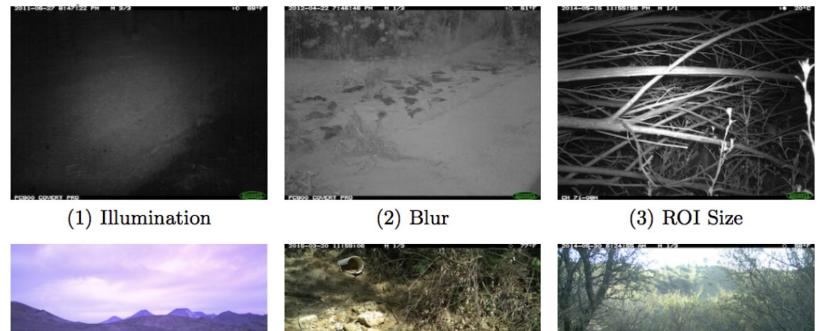
*estimates by Eric Fegraus, Conservation International 5

Camera traps

- 1,000s of organizations
- 10,000s of projects
- 1,000,000s of camera traps
- 100,000,000s of images

For example: Idaho Department of Fish and Game alone has 5 years of unprocessed, unlabeled data, around 5 million images *estimates by Eric Fegraus, Conservation International

Camera trap data is challenging

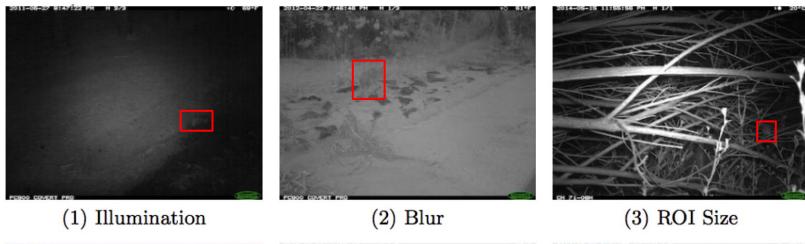


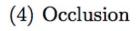
(4) Occlusion

(5) Camouflage

(6) Perspective

All these images have an animal in them





(5) Camouflage

(6) Perspective

SOA models don't generalize



Recognition in Terra Incognita, Beery et al., ECCV 2018

Class-agnostic detectors generalize best

MegaDetector

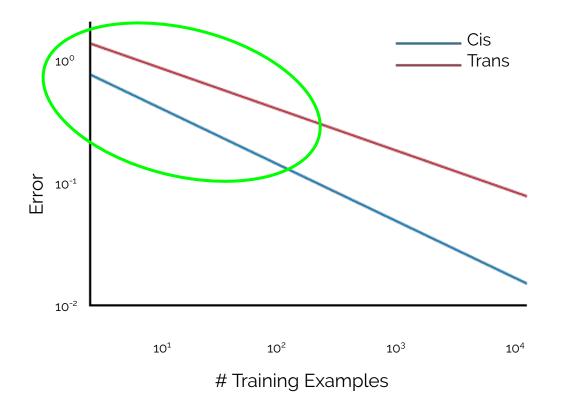
Microsoft AI for Earth

Efficient Pipeline for Automating Species ID in new Camera Trap Projects, Beery, et al., BiodiversityNext 2019 <u>https://github.com/microsoft/CameraTraps/blob/master/megadetector.md</u>

Sorted 4.8 million images in ~2.75 days

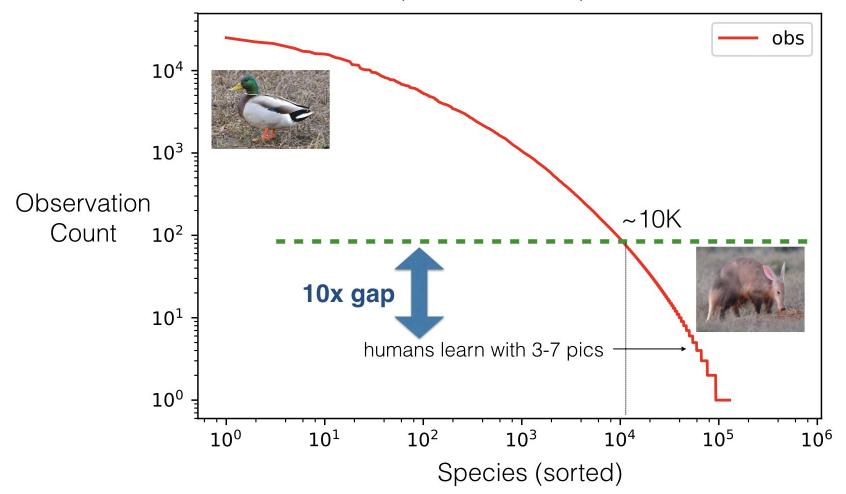
This would have taken 10 people working full-time 40 weeks to complete

Rare classes are hard



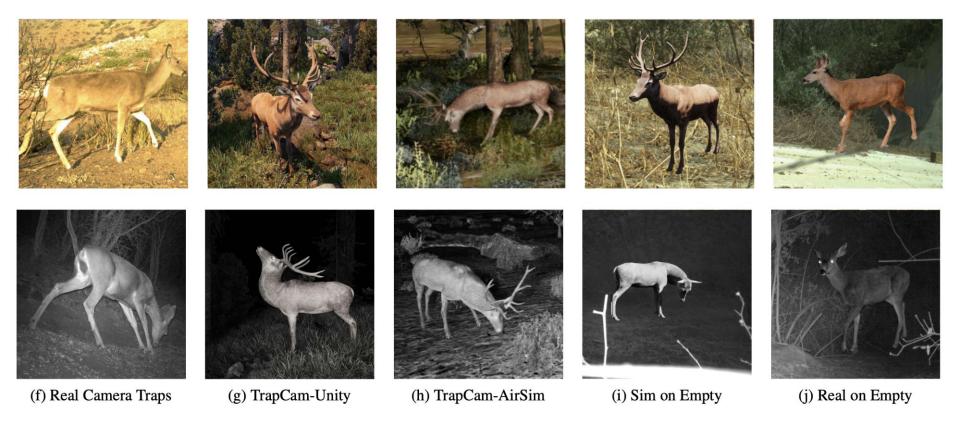
Recognition in Terra Incognita, Beery et al., ECCV 2018

Observations per iNaturalist Species: 16 M total



E.g. learning pose variability

Synthetic data improves rare-class performance



Synthetic Examples Improve Generalization for Rare Classes, Beery et al., WACV 2020

DLCcovert.com

08-27-2010 04:53:54

DLCcovert.com

08-24-2010 03:22:41

DLCcovert.com

08-27-2010 04:53:54

DLCcovert.com

08-24-2010 03:22:41

DLCcovert.com

08-27-2010 04:53:54

DLCcovert.com

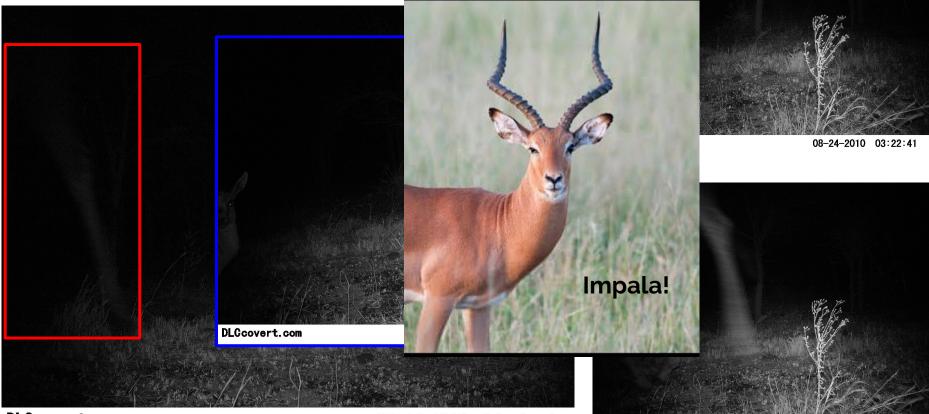
DLCcovert.com

08-24-2010 03:22:41

DLCcovert.com

08-27-2010 04:53:54

DLCcovert.com



DLCcovert.com

08-27-2010 04:53:54

DLCcovert.com

Human practitioners use this information, can we build a machine learning model that can do the same?

1. Improve per-location object classification

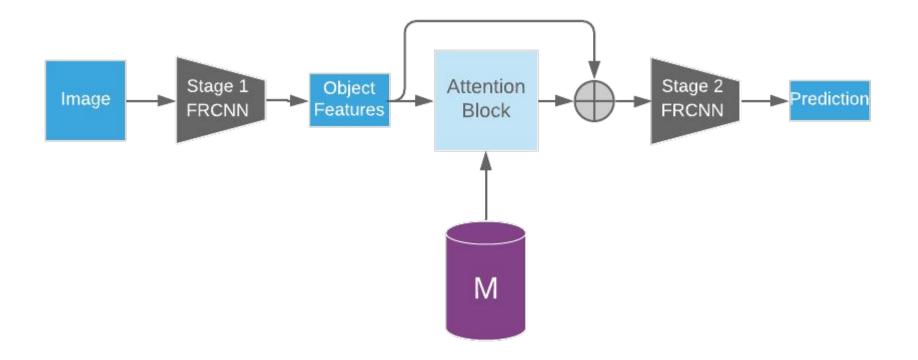


- 1. Improve per-location object classification
- 2. Ignore salient false positives

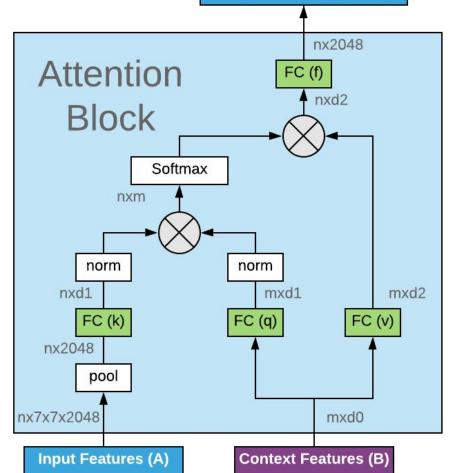
Contextual memory strategy

- Extract features offline
- Reduce feature size
- Curate features
- Maintain spatiotemporal information

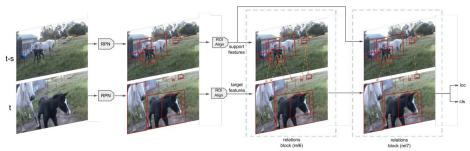
Use attention to incorporate context



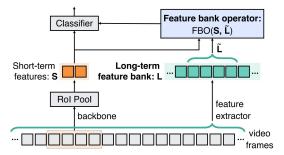
Context is incorporated based on relevance



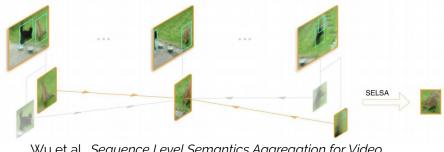
Related Work: long-term temporal context in video



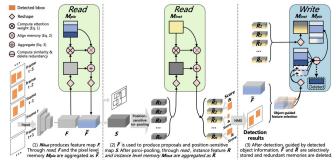
Shvets et al., Leveraging Long-Range Temporal Relationships Between Proposals for Video Object Detection



Wu et al., Long-Term Feature Banks for Detailed Video Understanding



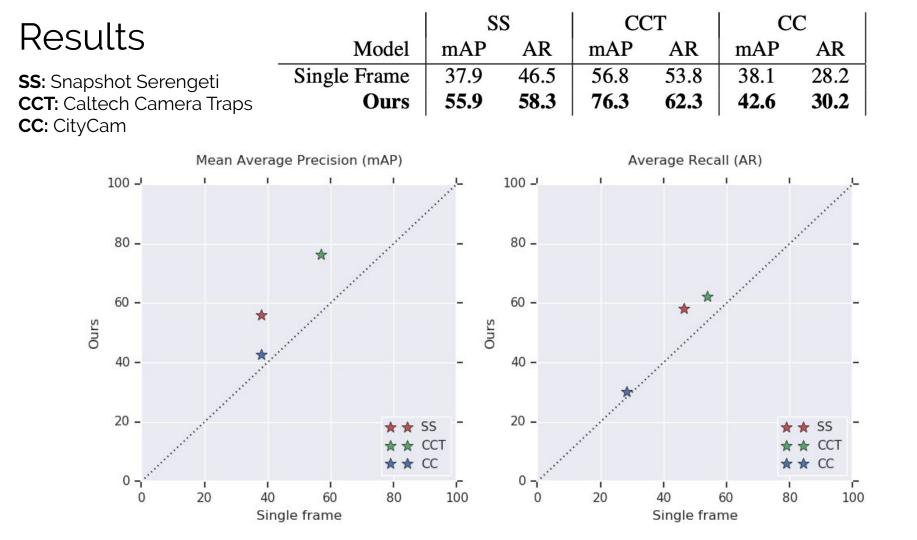
Wu et al., Sequence Level Semantics Aggregation for Video Object Detection



Deng et al., Object Guided External Memory Network for Video Object Detection

Datasets

- Snapshot Serengeti (SS): 225 cameras, 3.4M images, 48 classes, Eastern African game preserve
- Caltech Camera Traps (CCT): 140 cameras, 243K images, 18 classes, American Southwestern urban wildlife
- **CityCam (CC):** 17 cameras, 60K images, 10 vehicle classes, traffic cameras from NYC



Improves predominantly on challenging cases

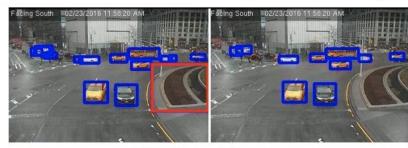
(a) Object moving out of frame.

(b) Object highly occluded.

(c) Object far from camera.

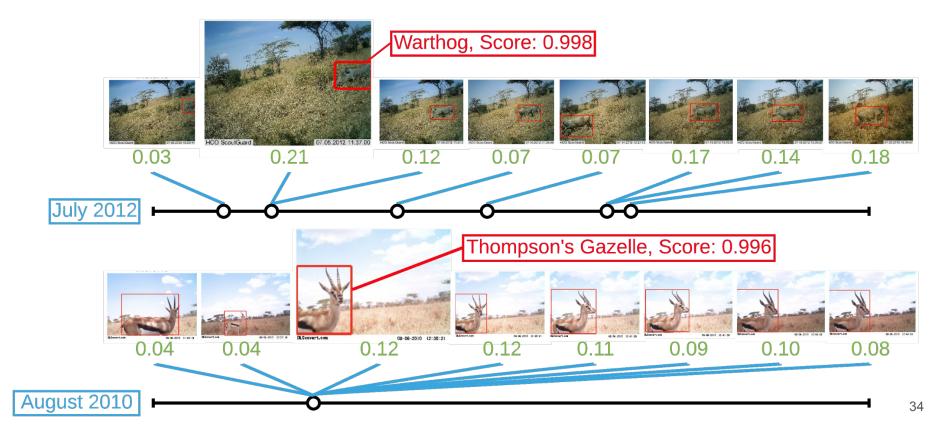
10-30-2010 20:41:18

(d) Objects poorly lit.

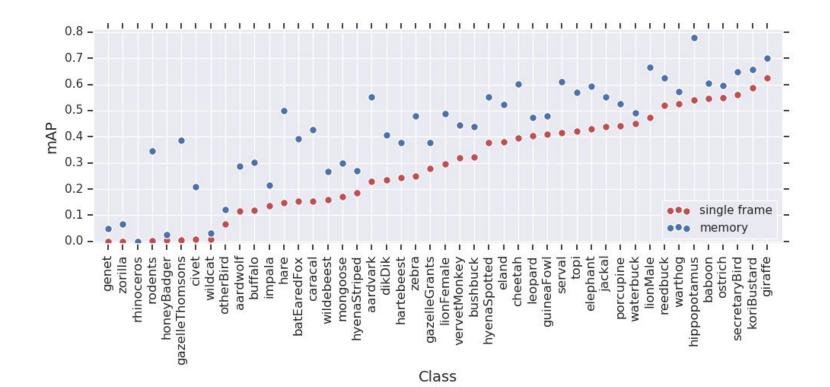


(e) Background distractor.

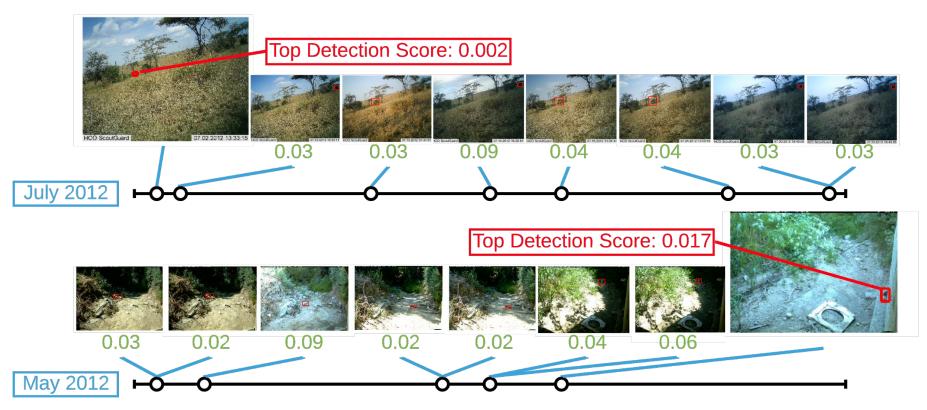
Attention is temporally adaptive to relevance



Snapshot Serengeti mAP improves for all classes



Background classes are learned without supervision

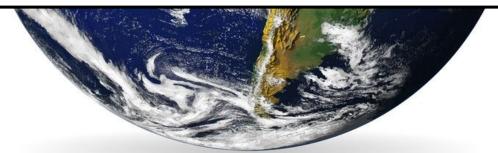


Static passive monitoring sensors

- Sparse, irregular frame rate
- Power, computational, and memory constraints.
- Much of the data is "empty"

Big goal: monitoring biodiversity, globally and in real time.

How can we contribute?



Current Biodiversity AI Competitions

Global camera traps (WCS) + RS

2M Species Observations + RS + LC + Covariates

https://www.kaggle.com/c/iwildcam-2020-fgvc7

https://www.imageclef.org/GeoLifeCLEF2020

